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Biological effect of hydrolyzed collagen on bone metabolism
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aINRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France; bClermont Universit�e, Universit�e d’Auvergne, Unit�e de Nutrition Humaine,
Clermont-Ferrand, France; cRousselot SAS, Courbevoie, France; dRousselot BVBA, Gent, Belgium

ABSTRACT
Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal
microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in
the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue
requiring innovative disease management. Proteins are important for bone by providing building blocks
and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role
in both bone development and bone maintenance. More specifically, since an increase in the overall
metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally
administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and
become available for metabolic processes in the target tissues, one may speculate that a collagen-
enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed
collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is
their impact on bone biology? In this manuscript, we critically review the evidence from literature for an
effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the
design of future nutritional approaches to manage osteoporosis prevention.

Abbreviation: HC, Hydrolyzed Collagen

KEYWORDS
Collagen; hydrolyzed
collagen; bone; osteoporosis

1. A need for alternative osteoporosis treatments

Osteoporosis is considered as a major cause of morbidity, dis-
ability and as an important contributor to medical care costs in
many regions of the world. Its prevalence increases with age
and the disease is twice more common in women than in men
because of the hormonal changes that occur during menopause
(Kanis, 1994). It has been defined as a skeletal disorder charac-
terized by a low bone mineral density and microarchitectural
alterations of bone tissue predisposing to an increased risk of
fracture (Conference, 1993; NIH, 2000). Several drugs are avail-
able for the treatment of osteoporosis such as bisphosphonates
or parathyroid hormone derivates. However, it has been
highlighted that compliance to such therapy is usually poor and
that the benefit does not continue after the end of treatment.
This is why there is an increasing rationale to focus on early
prevention to avoid or delay limitations of skeletal functions,
rather than to curative strategies. However, classical prophylaxis
with hormone replacement therapy is restricted due to concerns
about an increased risk for cancer and cardiovascular disease.
This is why health professionals strongly advocate the imple-
mentation of new strategies with proven scientific and clinical
value for the prevention of osteoporosis (Coxam et al., 2008). In
this light, food has multiple assets for good compliance. Over
the past 30 years research in nutrition has led to an exciting
progress supporting the hypothesis that dietary intervention,
including dietary supplements, can modulate specific target

functions in the body and thus reduce the risk of disease. In
this line, dietary intervention may offer an effective means to
deal with the problem of osteoporosis and its consequential
health costs. A nutritional approach has been shown to be a
cost-effective way of reducing calcium and vitamin D insuffi-
ciency, and thereby improving bone health and reducing frac-
ture risk (Lotters et al., 2013). The primary goal of a nutritional
strategy for the prevention of bone loss is to provide a suffi-
ciently bioavailable amount of constitutive elements such as cal-
cium, proteins as well as nutrients endowed with specific bone
sparing properties (proteins, some fatty acids, micronutrients…)
(Coxam et al., 2008; Nieves, 2013). Based on this concept and
because proteins play a major role in bone by providing build-
ing blocks and by exerting specific regulatory functions collagen
may provide a new option for aging consumers to maintain
good health. Nevertheless, the scientists need to provide a high
level of proof based on clinical trials, preclinical investigations,
and mechanistic studies to establish a health claim.

2. Collagen and bone biology

2.1. Collagen structure is associated with bone
mechanical properties

Collagen comprises of three polypeptide strands (alpha-chains)
which form a unique triple-helical structure (Fig. 1). To wind
into a triple helix, the chains must contain glycine as every
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third residue thus presenting the repeating structure Gly-X-Y
(Exposito et al., 2010), in which X and Y are mainly proline
(Pro) and hydroxyproline (Hyp) (Gelse, 2003). The resulting
Gly-Pro-Hyp triplet is the most frequent (10.5%) (Ramshaw
et al., 1998). In addition, the amino-acids Lys, Gln, and Arg
show a periodic distribution of 18 residues (Ramshaw et al.,
1998; Ottani et al., 2002). Collagens represent 30% of the total
protein mass in the body (Ricard-Blum, 2011) and are therefore
the most abundant proteins in mammals. They are the major
structural element in the extracellular matrix of all connective
tissues, including bone where they represent about 80% of the
total protein (Tzaphlidou, 2005). While the mineral content
mainly determines bone stiffness and rigidity, collagens provide
skeletal toughness. Basically, they form the scaffold for the
attachment of cells and the anchorage of macromolecules,
defining the shape of the tissue. Collagen fibers in bone are
organized in concentric layers providing maximal resistance
against torsional and compressive stress (Bailey, 2001). Within
the fibers, the collagen molecules are precisely aligned in a
quarter-staggered end-overlap manner. This arrangement pro-
vides holes within the fiber for the nucleation of calcium apatite
crystals.

As a matter of fact, the term “collagen” comprises a large
and still growing family of proteins. They all share the same
feature: a right-handed triple helix composed of alpha-chains
assembled into a rope-like figure bordered by the C- and N-
propeptides (Shoulders and Raines, 2009) (Fig. 1). However, if
the average collagen molecule measures 300 nm in length (cor-
responding to about 1000 amino acids) and 1.5 nm in diameter,
the length of the triple helical part varies considerably between
the different collagen types (Ottani et al., 2002; Exposito et al.,
2010). Collagen types, their distribution and composition are
listed in Table 1S (supplemental data). In bone approximately
95% is type I collagen (a heterotrimer formed by two identical
a1(I)- chains and one a2(I)-chain) providing viscoelastic
strength, torsional stiffness, and load bearing capacity while
also presenting nucleation sites for crystalline deposition. Type
II collagen is also involved in bone formation, even though it is
mainly found in cartilage (Asz�odi et al., 1998; �Alvarez et al.,
2000). Types III, V (Kahai et al., 2004), VI (Keene et al., 1991),
and X (Rosati et al., 1994) are present in bone at a very low
level. Unlike type I, collagen type III fibrils are less ordered,
thinner, and always combined with other collagen types.

Association of types III and VI are characteristic for some
regions of mature bone (for example, rat proximal femur)
(Luther et al., 2003). The function of type V collagen is not well
defined (Niyibizi and Eyre, 1994). Type VI is a microfibrillar
collagen which seems to line the matrix surrounding the osteo-
cytes and their canaliculi (Keene et al., 1991). Finally, according
to Hjorten et al., type XXVII collagen is found during cartilage
calcification and the transition of cartilage into bone during
osteogenesis as well as in cartilage modeling during endochon-
dral bone formation (Hjorten et al., 2007).

2.2. Collagen network alterations lead to bone fragility

In bone, collagen plays an important role in the force transmis-
sion and tissue structure maintenance. Importantly, it deter-
mines the amount of mineral deposition. Thus, the capacity of
bone to resist mechanical forces and fractures depends not only
on the quantity of bone tissue (mineralization) but also on its
quality (organization of the collagen framework) (Currey,
2003; Viguet-Carrin et al., 2006).

During aging, changes in the collagen network reduce bone
mechanical strength and elasticity, which contributes to the
occurrence of osteoporotic fractures (Wang et al., 2002). in
postmenopausal osteoporosis there is growing evidence that at
the material level, the volume fraction of mineral and the rela-
tive amounts of mature and immature collagen crosslinks are
affected by the tissue turnover rate, thus contributing to bone
fragility (Viguet-Carrin et al., 2006). Indeed, estrogen defi-
ciency has been shown to affect collagen stability by decreasing
its maturation rate (Sanada et al., 1978). Luther et al. observed
a disconnection of the collagen fibers after ovariectomy (Luther
et al., 2003). In the same line, Kafantari’s group reported struc-
tural changes in fibril architecture as well as diameter due to
altered crosslinks and hydroxylation in the ovariectomized rat
(Kafantari et al., 2000). Moreover, in inflammation-mediated
osteoporosis, severe alterations were detected at the ultrastruc-
tural level in bone and skin collagen fibrils in rabbits (Fountos
et al., 1998).

Regarding the mechanisms involved in ageing, Knott et al.
highlighted an increase in the overall metabolism of collagen
which may account for impaired posttranslational modifica-
tions, leading to severe dysfunctions in the collagen network
and a more fragile bone matrix (Knott and Bailey, 1998).

Figure 1. The collagen triple helix.
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Altered posttranslational modifications hamper the formation
of cross-links between collagen molecules based on aldehyde
formation from specific telopeptide hydroxylysine or lysine res-
idues (Knott and Bailey, 1998) and include an abnormal
increase in lysyl hydroxylation or glycosylation, which are key
to sustain the structural and mechanical integrity of the colla-
gen network (Yeowell and Pinnell, 1993; M. Saito and Marumo,
2010). These alterations lead to thinner fibrils and higher bone
fragility. Another age-related nonenzymatic modification of
collagen is the formation of advanced glycation end products
(AGE) via the so-called Maillard reaction, due to the accumula-
tion of reducible sugars in bone tissue (Viguet-Carrin et al.,
2006). In addition, racemization (spontaneous conversion of
the L-enantiomeric form to the biologically rare D-form) and
isomerization (transfer of the peptide backbone from the aspar-
tyl residue alpha-carboxyl group to the side chain beta- or
gamma-carboxyl group) occur during aging, resulting in struc-
turally altered forms of the collagen molecule with disrupted
function (Viguet-Carrin et al., 2006).

The knowledge of certain genetic diseases further empha-
sizes the importance of correctly formed collagen. The replace-
ment of just one glycine residue by another amino acid can
lead to pathologies such as osteogenesis imperfecta and the
Ehlers-Danlos Syndrome which are characterized by bone fra-
gility, weak tendons, and thin skin (Gautieri et al., 2009). Sub-
types of the Ehlers-Danlos Syndrome are linked to mutations
in type I or type III collagens, lysyl hydroxylase, or procollagen
N-proteinase (Yeowell and Pinnell, 1993). Type VI collagen
deficiency results in a disorganized collagen arrangement sug-
gesting that collagen type VI contributes to maintain bone

mass (Izu et al., 2012). Mutations in COL1A1 coding for the a1
(I)-chain) and COL1A2 (coding for the a2(I)-chain) are linked
to osteogenesis imperfecta, a group of brittle bone diseases. Fur-
ther, a polymorphism in the Sp1 binding site of the COL1A1
gene results in the synthesis of altered collagen with a possible
association to both decreased bone strength and bone mineral
density and has thus been postulated to play a role in osteopo-
rosis (Mann et al., 2001). In summary, mutations in genes that
encode individual chains of triple-helical bone collagens as well
as in genes encoding proteins involved in the intracellular and
extracellular modifications of the molecule are associated with
heritable diseases of the skeletal tissues and the development of
skeletal abnormalities (Arnold and Fertala, 2013). These data
emphasize the major role of collagen quantity and quality in
bone remodeling.

3. Collagen in nutrition and food supplements

Collagen-derived ingredients (gelatin and HC) are widely used
in food, cosmetic and pharmaceutical industries or tissue engi-
neering thanks to their gelling capacity (gel formation, texturiz-
ing, thickening, and water binding capacities) as well as their
surface (emulsion, foam formation and stabilization, adhesion
and cohesion, protective colloid function, and film forming
capacity) and hydration properties (swelling and solubility).
The terms “hydrolyzed gelatin,” “collagen hydrolysate,”
“hydrolyzed collagen” or sometimes “collagen peptides” used
in publications designate the same product. Gelatin is obtained
by a partial thermal hydrolysis of collagen which (partially)
separates the chains by destroying the crosslinks (Fig. 2).

Figure 2. From collagen to gelatin and hydrolyzed collagen.
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Subsequently, gelatin is extracted, purified, and dried (Karim
and Bhat, 2009). Two types of gelatin with different characteris-
tics can be manufactured. Type A gelatin is produced from
acid-treated collagen, while alkali-treatment forms type B gela-
tin. The extraction process (temperature, time, and pH) can
influence the length of the polypeptide chains and the func-
tional properties of the gelatin. This is why the quality of a gela-
tin preparation depends on the manufacturing method, but also
from which species or tissue it is extracted (G�omez-Guill�en
et al., 2011). For instance, shark gelatin has different character-
istics than pig gelatin (Yoshimura et al., 2000).

To form HC, gelatin is submitted to an enzymatic hydroly-
sis, the most commonly used proteases being trypsin, chymo-
trypsin, pepsin, alcalase, properase E, pronase, collagenase,
bromelain, and papain (G�omez-Guill�en et al., 2011). HC is usu-
ally presented as a white powder with good solubilisation prop-
erties, commonly used as a dietary supplement or included in
various foodstuffs. Like for gelatin, HC molecular weight distri-
bution, structure and composition, and subsequently functional
properties, depend on the processing conditions as well as the
raw material and the specificity of the enzyme used to hydro-
lyze the gelatin (Denis et al., 2008). The average molecular
weight of HC ranges between 2,000 and 6,000 Daltons (Mosko-
witz, 2000). The most abundant sources of gelatin or HC are
derived from mammals such as pig skin (46%), bovine hide
(29.4%), and pork and cattle bones (23.1%) (G�omez-Guill�en
et al., 2011). However, the demand for alternative sources has
increased after the bovine spongiform encephalopathy (BSE)
crisis and for religious and cultural reasons (Karim and Bhat,
2008; Mhd Sarbon et al., 2013). Production from nonmamma-
lian species, for instance from fish, is thus of growing impor-
tance (Nagai and Suzuki, 2000; Singh et al., 2011; Zeng et al.,
2012; Mhd Sarbon et al., 2013).

3.1. Safety

Gelatin, and by extension HC, have been approved as Generally
Recognized As Safe (GRAS) by the US Food and Drug Admin-
istration (USFDA) Center for Food Safety and Nutrition.
Indeed, there is no documented evidence of a deleterious effect
from the ingestion of HC other than a rare allergy, sensation of
unpleasant taste or feeling of heaviness in the stomach. In a
multicenter, randomized, parallel, placebo-controlled clinical
trial, of 389 patients who were orally treated with 10 g HC or
placebo over a period of 6 months, only 12 dropped out due to
side effects and among those 9 had received the placebo (Mos-
kowitz, 2000). Comparably, in a multicenter, randomized, par-
allel, double-blind study carried out on one hundred male and
female volunteers aged � 40 years with knee osteoarthritis, HC
was well tolerated (Trc and Bohmova, 2011). Recorded adverse
events were similar whether the volunteers were given 10 g HC
daily or glucosamine sulfate for 90 consecutive days (Trc and
Bohmova, 2011). HC tolerability has also been assessed in vari-
ous animal studies. Acute, subacute, mutagenic, and teratogenic
toxicity analyses have not indicated any health risk. Indeed,
Takeda et al. studied the acute and subacute toxicity of collagen
from bovine derm, showing no marked deleterious effect except
for local irritation which was seen only after parenteral admin-
istration (U. Takeda et al., 1982). In the same line, Wu et al.

described the high safety of oral HC administration in a rat
model when given 1660 mg/kg body weight per day (corre-
sponding to about 10 times the currently used doses in
humans). Notwithstanding, rats could exhibit kidney hypertro-
phy at a dose of 100 times the recommended daily intake
(166 mg/kg body weight per day) (Wu et al., 2004). Schauss
et al. also conducted two acute and subchronic oral toxicity
investigations in rats with hydrolyzed chicken sternal cartilage
which contains mostly type II collagen (Schauss et al., 2007).
With a single dose of 5000 mg/kg, all the animals survived
without any major pathological lesions, exhibiting a normal
body weight gain throughout the study. Regarding subchronic
toxicity, all the animals survived and showed no significant
changes in body weight or histopathology, whether they were
administered 0, 30, 300, or 1000 mg/day of the test product per
kg of body weight for over 90 days. Additionally, the risk for
chronic toxic effects was not higher in marine HC-treated rats
at concentrations of 2.25, 4.5, 9, and 18% (wt/wt) in the diet
(equivalent to 1063, 2216, 4609, and 8586 mg/kg¢body weight/
day for females, and 0907, 1798, 3418, 6658 mg/kg¢bw/day for
males, respectively), than in those fed the basal rodent diet
(Liang et al., 2012). Note however that cardiac arrhythmias
have been observed in 3 of 6 subjects receiving 300 kcal/ day as
HC (equivalent to 75 g/day, i.e., all the protein intake in the
form of collagen) supplemented with triptophane, calcium,
magnesium, phosphorus, potassium, and vitamins (Lantigua
et al., 1980). Deaths have even been registered in obese adults
who were reducing their body weight by means of diets that
provided same amounts of collagen or gelatin hydrolysates
(300–500 kcal/ day) without any supplementation in micronu-
trients (Van Itallie and Yang, 1984).

3.2. Bioavailability

Orally administered HC are digested in the gut, cross the intesti-
nal barrier, enter the circulation, and become available for meta-
bolic processes in the target tissues. Even though HC does not
contain all the essential amino acids (tryptophan is not present,
and cysteine only in small amounts), it is often used to supple-
ment other proteins because of its high digestibility, good con-
sumer tolerance and its specific amino-acid content (high Hyp,
Pro and Gly) (Iwai et al., 2005; Ohara et al., 2007). As a matter
of fact, ingestion of a protein hydrolysate, as opposed to its
intact form, accelerates the digestion and the absorption from
the gut, increases postprandial amino acid bioavailability, and
tends to improve the incorporation rate of dietary amino acids
into target tissues (Koopman et al., 2009). This concept was
confirmed by Urao et al. who found that intestinal permeability
followed a different pattern for small molecular weight particles
than for large molecules in rabbits, suggesting there may be dif-
ferent mechanisms of intestinal transport for molecules of dif-
ferent size (Urao et al., 1997). It has been proposed that HC
peptides are only digested to a certain degree within the gastro-
intestinal tract, with a proportion of intact high-molecular-
weight proteins reaching the blood by passing through the
enterocyte (transcytosis) at a level of approximately 10% (Mos-
kowitz, 2000) (Fig. 3). Oesser et al. demonstrated that 95% of
orally applied HC were resorbed within 6 hours from the gas-
trointestinal tract of mice (Oesser et al., 1999). Just 1 hour after
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oral administration already 47% had been absorbed. Iwai et al.
provided evidence in humans, that oral ingestion of HC signifi-
cantly increased the peptide form of Hyp in blood with a maxi-
mum level after 1–2 hours and a decrease to half of the
maximum level after 4 hours (Iwai et al., 2005).

Subsequent to oral ingestion of HC in rodents and humans,
various studies have shown that HC-derived amino acids, as
well as di- and tripeptides can be detected in blood as well as in
various target tissues such as cartilage (Oesser et al., 1999), skin
(Kawaguchi et al., 2012), or kidney (Watanabe-Kamiyama et al.,
2010). The major collagen-derived dipeptide found in plasma is
Pro-Hyp (Iwai et al., 2005; Ichikawa et al., 2010; Shigemura
et al., 2011). It is highly resistant to hydrolysis and is not digest-
ible by peptidase (Aito-Inoue et al., 2007) like other Hyp-con-
taining peptides (Ohara et al., 2007). In addition, small amounts
of other di- and tripeptides such as Ala-Hyp, Ala-Hyp-Gly,
Leu-Hyp, Ile-Hyp, Phe-Hyp, Pro-Hyp-Gly, (Iwai et al., 2005),
and Gly-Pro-Hyp can be detected (Ichikawa et al., 2010; Wata-
nabe-Kamiyama et al., 2010). Another peptide, Hyp-Gly, was
more recently discovered in human plasma upon collagen inges-
tion (Shigemura et al., 2011; Sugihara et al., 2012). It is notice-
able that the average plasma concentration of those peptides is
dose-dependent: Hyp-containing peptides reach maximum lev-
els of 6.43, 20.17, and 32.84 nmol/mL following ingestion of
30.8, 153.8, and 384.6 mg doses of HC, respectively (Shigemura
et al., 2011; Shigemura et al., 2014). Moreover, the quantity and
structure of such Hyp-containing peptides in human blood after
oral administration of HC depends on the source; for example,
Ala-Hyp-Gly and Ser-Hyp-Gly were detected only from fish
scale gelatin hydrolysate, Ala-Hyp and Pro-Hyp-Gly from
fish scale or fish skin gelatin hydrolysates, whereas Leu-Hyp,
Ile-Hyp and Phe-Hyp appeared after ingestion of fish and to a
lower level porcine skin originated HC (Ohara et al., 2007).
Finally, synergistic effects with the food matrix can occur and
improve HC absorption, for instance when HC is provided
within fermented milk (Walrand et al., 2008).

3.3. Hydrolyzed collagen reaches the bone tissue

To synthesize a single picogram of collagen type II, more than
1 billion glycine molecules and 620 million proline molecules

are required. In the absence of these amino acids, the anabolic
phase of collagen metabolism can be impaired (Clark, 2007).
Proline and Hydroxyproline serves to stabilize the collagen tri-
ple helix, their structure constrain the rotation of the polypep-
tide collagen chain and creates and strengthens the helicel
characteristics of the molecule. Proline biosynthesis is related
to both the citric acid cycle and the urea cycle. In looking at
other proline biosynthetic pathways, the arginine/ornithine/
glutamic semialdehyde/proline pathway looks the most promis-
ing (Barbul, 2008). As a matter of fact, orally consumed HC has
not only been shown to be well absorbed in the intestine, but
also to accumulate in target tissues. Kawaguchi et al. studied
the biodistribution of orally administered [14C]Pro-Hyp in rats
using autoradiography (Kawaguchi et al., 2012). They observed
a wide distribution of radioactivity at 30 min postdose and a
cellular uptake of radioactivity in osteoblasts and osteoclasts as
well as in dermal fibroblasts, epidermal cells, synovial cells, and
chondrocytes after 24 hours. In addition, according to Wata-
nabe’s group, absorption of low-molecular-weight HC in the
ovariectomized rat was associated with an increased content of
the organic substance in bone (Watanabe-Kamiyama et al.,
2010). Finally, Barbul has shown that during the early phases of
wound healing, wound fluid proline levels are at least 50%
higher than plasma levels, suggesting active import of proline
into the wound (Barbul, 2008).

4. Hydrolyzed collagen affects bone biology

4.1. Evidence from animal models

Growth models
Young growing rats are potential models to study factors that
can influence bone mass accrual and thereby affect peak bone
mass (Table 1). In growing male rats, HC supplementation has
been described to promote the development of long bones (Xu
et al., 2010). The reported increase in size, dry weight, ash
weight, bone mineral density, and both stiffness and toughness
of femurs was likely related to an increased osteoblast activity
rather than a decreased rate of bone resorption, since higher
serum osteocalcin and bone-specific alkaline phosphatase
(BALP) content was observed with no significant difference in

Figure 3. Mechanisms of hydrolyzed collagen intestinal absorption.
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N-terminal telopeptide of type I collagen (NTX). Leem et al.
confirmed a dose-dependent effect of a selected HC with a
molecular weight of <3 kDa on longitudinal bone growth and
height of the growth plate in adolescent male rats, whereas gela-
tin as such failed to produce the same effect (Leem et al., 2013).
Insulin-like growth factor ¡1 (IGF1) and bone morphogenetic
protein-2 were highly expressed in the growth plate in the
treated group animals. Accordingly, Takeda et al. demonstrated
that moderate HC consumption (20% protein in the diet of
which 30% was HC) increased bone mass during growth in rats
and that running exercise further promoted the effect. No fur-
ther beneficial effect on bone mass was elicited with a higher
HC intake (40% protein in the diet of which 30% was HC) (S.
Takeda et al., 2013). Finally, in the work published by Wu et al.
(Wu et al., 2004), carried out in growing male rat, collagen pep-
tides given at amounts equal to the currently used doses in
humans (166 mg/kg body weight per day) or at a 10 or even a
100 higher dose (1660 or 16660 mg/kg body weight per day),
bone mineral density of the femur was significantly higher in
the animals given the highest dose.

Bone loss models
Most of the studies set up to study the effect of HC on bone loss
have been carried out in young OVX animals (Table 1).
Although, the only small animal model recommended by the
FDA (Thompson et al., 1995) for preclinical evaluation of post-
menopausal bone loss is the aged OVX rat model because in
marked contrast to postmenopausal women, growing rodents
have very little, if any, bone remodeling (Erben, 1996), young
growing rats can provide useful information on the short-term
effects of drugs on bone resorption, calcium kinetics and bal-
ance, or calciotropic hormone levels. They can also be used to
evaluate the effects of interventions aimed at increasing osteo-
blastic recruitment and bone formation (Bonjour et al., 1999).
As a matter of fact, ovariectomized (OVX) rodents are cur-
rently used as animal models to study postmenopausal osteo-
porosis. Estrogen deficiency results in disorganized bone
collagen fibrils of smaller diameter in both trabecular and corti-
cal bone (Garcia-Moreno et al., 1995). In inflammation-
mediated osteoporosis (similar to senile osteoporosis), severe
alterations at the ultrastructural level in bone and skin collagen
fibrils were detected in rabbits (Fountos et al., 1998). A growing
body of evidence demonstrates the potential of collagen intake
to prevent bone loss in models of estrogen deficiency.

Nomura et al. demonstrated the efficacy of shark skin gelatin
to increase type I collagen and glycosaminoglycan content as
well as bone mineral density in the femur of OVX rats to a level
comparable in the sham operated group (Nomura et al., 2005).
In the same line, Han and colleagues tested cod gelatin for
90 days in 3-month old female Sprague-Dawley OVX rats
observing a preserved femoral neck bone mineral density and
trabecular microarchitectural properties in OVX rats fed a gela-
tin compared to a control diet (2009). The beneficial effect was
partly attributed to a significant reduction of proinflammatory
cytokines (IL-1beta, IL-6, and TNF-alpha) and a decreased uri-
nary excretion of resorption markers [NTX, C telopeptides of
type I collagen (CTX) and deoxypyridinoline]. As mentioned
above, HC ingestion can increase the content of organic sub-
stance in bone (Watanabe-Kamiyama et al., 2010). In OVX

rats, HC supplementation at a level 10 times higher than the
human recommendations (i.e., 10g/day) unequivocally contrib-
uted to the conservation of vertebral mass, protein content
(including osteocalcin), and mechanical strength, not seen
when gelatin was used as a supplement (De Almeida Jackix
et al., 2010). In the same experimental model, Kim et al.
observed a prevention of trabecular bone loss and improved
microarchitecture of the lumbar vertebrae (H. K. Kim et al.,
2013). Finally, Guillerminet et al. demonstrated that HC
administration to 3-month old OVX C3H/HeN mice increased
bone mineral density and bone strength (Guillerminet et al.,
2010). The fact that plasma concentrations of CTX were lower
while BALP levels were higher under HC treatment suggested
that collagen can improve bone remodeling. These data allow
to test for evidence of heterogeneity of bone turnover in such a
condition of bone loss, and to attempt to devise an “uncoupling
index” by using the relationship between bone-specific bio-
chemical markers of bone formation and bone resorption.
Indeed, where turnover markers are reported, bone formation
and degradation markers should always be reported in tandem
(Eastell et al., 1993). In the present case, increased BALP levels,
while CTX decreased may indicate a net benefit to bone.

That is, it cannot be determined whether bone formation
increased to a greater degree than resorption, suggesting a net
benefit to bone, or to a lesser degree, suggesting net harm to
bone, or to a similar degree, suggesting bone turnover remains
tightly coupled.

A second study by the same group showed that the HC
administration for 3 or 6 months significantly prevented bone
loss in OVX mice (Guillerminet et al., 2012). The authors fur-
ther demonstrated that HC ingestion for 3 months is as effi-
cient as raloxifene to protect 3-month-old OVX mice from
bone loss. Such a bone sparing effect was also seen as soon as
1 month postsurgery in a follow-up study (Daneault et al.,
2014). Finally, in a mice model of protein undernutrition, have
shown that gelatin has differential effects on bone mineral den-
sity compared to casein (6% casein C 4% gelatin having a
greater effect than a 10% casein diet) (Koyama et al., 2001).

Bone healing models
Tsuruoka et al. have shown that oral administration of HC to
rats with femur damage accelerated the fracture healing
(Tsuruoka et al., 2007) (Table 1). Accordingly, a 3-week oral
supplementation with High Advanced-Collagen Tripeptide
(HACP), a soluble powder containing about 20% of Gly-X-Y
was beneficial for the bone healing process after a cortical bone
defect in rats (Hata et al., 2008).

Altogether these results from preclinical models provide a
solid body of evidence that HC has a promising potential to
maintain a balanced bone turnover in different physiological
settings (growth, bone loss, healing) by promoting bone forma-
tion (the ratio of bone formation to resorption biomarkers
being been used to represent the state of bone turnover). In
those studies, the significant difference in such a ratio denotes
an improvement in bone turnover in favor of bone formation
resulting from HC supplementation. Consequently, like postu-
lated by Elam et al. (Elam et al., 2014), HC may serve as an
effective supplement for preventing bone loss by significantly
enhancing the organic substance content of bone. This could
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be explained by a downregulation of the production of proin-
flammatory molecules such as interleukins-1b and - 6, and
tumor necrosis factor-a. Because these cytokines in particular
are responsible for upregulation of receptor activator for
nuclear factor kappa-B ligand (RANKL) for osteoclast recruit-
ment, this may explain the noteworthy impairment of bone
loss. The key emerging question is whether these results can be
extrapolated to the human situation.

4.2. Evidence from clinical trials

If HC has already been used as a food supplement to sooth pain
in patients suffering from osteoarthritis, to date very few clini-
cal studies have evaluated its effects on bone metabolism
(Moskowitz, 2000; Bagchi et al., 2002; Fujita et al., 2002; Henro-
tin et al., 2011; Trc and Bohmova, 2011; Bruyere, Zegels, et al.,
2012) (Table 2). In most of the studies, HC is applied in associ-
ation with other compounds like drugs or food supplements
(Hooshmand et al., 2013; Elam et al., 2014).

In a first clinical investigation, the effects of calcitonin alone
or in combination with a HC-rich diet were studied on bone
metabolism in postmenopausal women. The results revealed
that a daily ingestion of 10 g HC associated with intramuscular
injection of calcitonin (100 UI) twice a week for 24 weeks
enhanced and prolonged the effect of the drug as shown by a
fall in urinary pyridinoline cross-link levels (Adam et al., 1996).
Next, Fujita et al. evaluated the effect of a daily supplementa-
tion with 900 mg absorbable algal calcium, 3.5 g collagen, and
other matrix components, including glucosamine (Fujita et al.,
2002). Urinary excretion of NTX was decreased in the supple-
mented group. In addition to the calcium-mediated suppres-
sion of parathyroid hormone, collagen degradation was
reduced by the inhibition of cytokine-induced metalloprotei-
nase release, including collagenase. Consistently, another study
reported, that in osteopenic postmenopausal women consump-
tion of 5 g calcium/collagen mix (containing 500 mg of calcium
carbonate and 5 mg vitamin D) for 3 months enhanced bone
mass by orienting bone turnover toward formation rather than
resorption (increased BALP/TRAP5b ratio), compared to con-
trol volunteers (given 500 mg of calcium carbonate and 5 mg
vitamin D daily) (Hooshmand et al., 2013). However, in
another investigation the daily ingestion of only HC (10 g/d)
for 24 weeks in osteopenic postmenopausal women did not
produce any significant effect on bone metabolism as assessed
by resorption or formation biomarkers such as osteocalcin and
BALP (Cuneo et al., 2010). The authors noticed that the major-
ity of patients exhibited an excess body weight (it is thus possi-
ble that they did not receive a sufficient dose) as well as
inadequate calcium intake, which could have been limiting for
the HC effect. More recently, Elam et al. (2014) reported that
long-term calcium collagen chelate supplementation together
with vitamin D, may provide protection against excessive bone
loss and turnover (for which calcium and vitamin D alone
could not prevent), in postmenopausal women (Elam et al.,
2014).

Finally, since the bone mass at a given age also depends on
the peak bone mass acquired during growth, investigating the
effect of HC in children is of interest. Martin-Bautista et al.
demonstrated in a 4-months randomized double-blind study,

that a daily intake of HC (with or without calcium) at key
stages of growth and development had a beneficial effect on
bone remodeling (Martin-Bautista et al., 2011). The bone for-
mation factors Insulin-like growth factor 1 (IGF1) and BALP
where higher in the group receiving HC when compared to the
placebo group.

Although the existing data on HC effects on bone health in
humans is promising, the Group for the Respect of Ethics and
Excellence in Science has comprehensively outlined (Bruyere,
Rizzoli, et al., 2012), that further, well-designed studies are war-
ranted to strengthen the scientific evidence, also with regard to
the pathways that mediate HC effects on bone health.

4.3. Mechanisms involved in collagen effects on bone

Changes in bone cell behavior
Studies investigating the in vitro effect of hydrolyzed collagen
provide interesting data even though we must stay aware of the
limitations of such approaches (Table 3). As a matter of fact, in
the body, the bone cells are never exposed to collagen as usually
used in these studies. Indeed, digestion of dietary collagen in
the gastro intestinal tract is followed by first-pass metabolism
during absorption, and bioactive molecules (i.e., proteins, pep-
tides…) will appear in the circulation (Fig. 4). Therefore, test-
ing the effect of serum from animals fed specific enriched diets
on cellular outcomes should provide better information for
evaluation of dietary effect on specific organ. It should be noted
that only Tsuruoka et al. (Tsuruoka et al., 2007) considered a
physiological form (collagen tripeptide).

Most of the studies investigating the effect of HC on bone
cell metabolism have focused on bone forming cells (osteo-
blasts) (Fig. 5). In 1998, Komori et al. reported that bone mar-
row stromal cells differentiate into osteoblasts when cultured
with type 1 collagen matrix (Komori and Kishimoto, 1998).
Andrianarivo and collaborators demonstrated concurrent bio-
chemical changes in the human cell line MG-63 in response to
type I collagen exposure involving increased specific activity of
cell-associated alkaline phosphatase and increased secretion of
osteonectin (up to 2.5-fold for each protein) (1992). Using
osteoblasts derived from rat calvaria and grown on collagen
type I films, Lynch et al. defined the critical role of type I colla-
gen in mediating the signaling cascade for the expression of a
mature osteoblast phenotype and the mineralization of the
extracellular matrix in a physiological manner (Lynch et al.,
1995). They described the temporal expression of genes charac-
terizing distinct periods of growth and differentiation. During
the initial proliferation period, expression of fibronectin, beta 1
integrin, and actin was decreased by 50–70% in cells grown on
collagen. In contrast, alkaline phosphatase enzyme activity was
elevated during the proliferation period, while mRNA levels
remained low, suggesting a posttranscriptional regulation. In
the postproliferative period, osteonectin, osteocalcin, and
osteopontin were upregulated. These results strongly support
that collagen I from bone extracellular matrix may play an
important role in osteoblastic differentiation and phenotypic
expression.

Regarding HC, Fu et al. observed that salmon skin gelatin
hydrolysates were capable to induce cell proliferation, acceler-
ated cell cycle progression, and to inhibit cell apoptosis in
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human hFOB1.19 cells, especially when skin HC were hydro-
lyzed with papain compared to other proteases (Fu and Zhao,
2013). Kim et al. confirmed the dose-dependent effect of HC
on human osteoblast proliferation (H. K. Kim et al., 2013; H. K.
Kim et al., 2014a) and recent data from our lab have provided
evidence of both enhanced osteoblast differentiation and prolif-
eration as well as improved cell survival and viability by bovine
HC (Daneault et al., 2014). In parallel, Liu et al. demonstrated
that bovine HC promotes osteoblast differentiation and miner-
alized bone matrix formation (Liu et al., 2014). Accordingly,
HC dose-dependently stimulates type I collagen mRNA expres-
sion and protein production (H. K. Kim et al., 2014a; Tsuruoka
et al., 2007; Yamada, Yoshizawa, et al., 2013) as well as alkaline
phosphatase activity (Guillerminet et al., 2010; H. K. Kim et al.,

2013; Yamada, Nagaoka, et al., 2013). Incubation of human
osteoblasts with 0.1% fish HC increased osteocalcin, osteopon-
tin, BMP-2 and integrin b3 mRNA expression, and accelerated
matrix mineralization as compared to untreated cells (Yamada,
Yoshizawa, et al., 2013). Consequently, this translated into
increased calcium disposal or mineralization in either human
or murine osteoblasts (Tsuruoka et al., 2007; Yamada, Nagaoka,
et al., 2013; Yamada, Yoshizawa, et al., 2013; Liu et al., 2014)
(Fig. 5). In addition to an effect on osteoblasts, the impact of
HC on osteoclast biology was investigated. A significant inhibi-
tion of osteoclast formation and activity in cell lines and in pri-
mary cultures was observed when incubated with bovine and
porcine HC (Guillerminet et al., 2010) or with shark protein
hydrolysates (Uehara et al., 2014). Consistently, we recently

Figure 4. Integrated viewpoint of hydrolyzed collagen effects on bone remodeling process.
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found a higher OPG/RANKL ratio after incubation of MC3T3
cells with bovine HC reflecting an unfavorable metabolic orien-
tation for osteoclast differentiation (Daneault et al., 2014). Sim-
ilar to HC, in human osteoblastic MG-63 cells, other peptides
such as egg yolk-derived peptides have been shown to stimulate
early stages of the osteogenic differentiation via the MAPK/
ELK1signaling pathway (up-regulation of genes responsible for
bone formation such as ALPL, COL1A1, and SPP1) and acceler-
ate mineralization by hastening mineralization initiation, sub-
sequently leading to an increase in the extent of calcium
deposition (H. K. Kim et al., 2014b).

Molecular mechanisms
Interaction of the Asp-Gly-Glu-Ala amino acid domain of type
I collagen with the alpha2beta1 integrin receptor on the cell
membrane was proven to be an important signal for bone mar-
row cell differentiation toward an osteoblastic phenotype
(Mizuno and Kuboki, 2001). Additionally, HC-induction of the
bone-specific transcription factor osterix was associated with
the up-reglation of type I collagen expression, thus providing
insights into the molecular basis of HC action on osteoblasts
(Tsuruoka et al., 2007; Yamada, Yoshizawa, et al., 2013; H. K.
Kim et al., 2014a). Bovine HC was shown to stimulate osteo-
blast differentiation, mineralized bone matrix formation, ALP
activity, and osteocalcin production through increased Runx2
expression and activity (Liu et al., 2014). Activation of ERK1/2,
JNK1/2, p38, and ELK1 phosphorylation in the human osteo-
blast cell line MG-63 by HC was correlated with increased
COL1A1, alkaline phosphatase, osteocalcin and osteopontin
gene expression (H. K. Kim et al., 2014a). Extracellular signal-
regulated kinase (ERK) inhibitor abolished the HC-induced
COL1A1 expression, thus supporting the importance of the
ERK/MAPK signaling pathway in mediating HC effects on
osteoblast cells (H. K. Kim et al., 2013). Furthermore, it cannot
be excluded that, due to its richness in aromatic amino-acids
(HYP), hydrolyzed collagen can induce IGF1 production which
consequently activate a calcium sensing receptor and in turn
exert an anabolic effect on bone as previously shown (Dawson-
Hughes et al., 2007; Conigrave et al., 2008). Finally, HC appears

to greatly impact osteoblast biology but the mechanisms under-
lying their action are only partially understood. Besides, the
impact of HC on osteoclasts remains to be further investigated.

Other effects of hydrolyzed collagen
In addition to a direct modulation of bone cells, HC has been
shown to improve calcium absorption, another very important
mechanism for preserving bone capital (G. H. Kim et al., 1998).
Indeed, epidemiological, isotopic, and meta-analysis studies
suggest that dietary protein works synergistically with calcium
to improve calcium retention and bone metabolism (Kerstetter
et al., 2011). For example, brush border membrane vesicle Ca
uptake studies suggest that higher protein intake improves
Ca absorption, at least in part, by increasing transcellular Ca
uptake (Gaffney-Stomberg et al., 2010). Jung et al. isolated fish-
bone peptides with a high affinity to calcium and a high content
of phosphopeptide (Jung et al., 2006). Using ovariectomized
rats, they observed a higher calcium retention and a preserva-
tion of both bone mineral density and bone strength when
rodents were supplemented with those peptides. HC from both
fish and shrimp were described to contain both, a biologically
related calcitonin and/or calcitonin-gene-related peptide
(Fouchereau-Peron et al., 1999). Nevertheless, this observation
requires further investigation with regards to the role of these
peptide fragments in bone biology. Besides, HC derived from
chicken bones has been shown to reduce proinflammatory-
cytokine production in mice (Zhang et al., 2010) and recent
works support natural antioxidative properties of HC peptides
(Alem�an et al., 2011; Ao and Li, 2012). In addition, as bone tis-
sue function is closely linked to lipid metabolism, it is worth
noting that the Pro-Hyp peptide reduces the size of lipid drop-
lets in mouse 3T3-L1 preadipocytes (Minaguchi et al., 2012)
and that fish HC was found to affect lipid absorption and
metabolism in rats resulting in a lower transient increase of
plasma triglycerides and associated inflammation (Masataka
Saito et al., 2009). Finally, it cannot be excluded that immuno-
modulation can be involved. In vitro and in vivo studies have
shown that certain peptide fractions in fish protein hydroly-
sates may stimulate the nonspecific immune defense system

Figure 5. Supposed cellular and molecular mechanisms of hydrolyzed collagen action on bone.
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(Khora, 2013). Indeed, according to G�omez-Guill�en et al. colla-
gen and gelatin-derived peptides have numerous bioactivities,
among which antimicrobial activity, mineral binding capacity,
a lipid-lowering effect, immunomodulatory activity, and benefi-
cial effects on skin, bone, or joint health (G�omez-Guill�en et al.,
2011).

5. Conclusion

A growing body of evidence demonstrates that HC owns bioac-
tive properties beneficial for bone tissue, including stimulation
of bone forming cells, improvement of calcium absorption,
antiinflammatory and antioxidant capacities. Those properties
render HC a new and innovative candidate for putative dietary
intervention in the prevention of osteoporosis. Still, many ques-
tions remain to be answered: what is the optimal form of HC,
what is the optimal dose? To date, we recently started to
address these questions and identified that origin and length of
hydrolyzed collagen may play an important role in mediating
positive action on bone (unpublished data). In parallel, investi-
gations of the signaling pathways involved in the bone sparing
effect are now required to further support these conclusions.
Altogether, in the light of the increasing prevalence of osteopo-
rosis related to the worldwide increasing longevity, good candi-
dates for dietary prevention are of particular relevance. As
such, HC could offer additional values to calcium and vitamin
D, thus responding to the growing demand for primary
prevention.
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